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Abstract—Flow in the Ekman layer of a conducting liquid past an infinite porous plate is investigated
when the liquid is permeated by a transverse magnetic field and the Hall effects are taken into account,
It is found that asymptotic solution exists both in the presence of suction or blowing at the plate. For
fixed magnetic and suction parameters, the skin friction of the primary flow increases with increase in
the Hall parameter wt, while that for the secondary flow first increases, reaches a maximum and then
decreases with increase in wrt. Steady distribution of temperature in the flow exists only for suction at
the plate and for large Eckert numbers, heat flows from the liquid to the wall even if the wall temperature
is higher than that of the ambient stream.

NOMENCLATURE
C,, specific heat at constant pressure;
e, electric charge;

E,, Ekman parameter;

Ec, Eckert number;

{(Ex,E,,E;), components of electric field E;
{(H,, H,,H,), components of magnetic field H;

H,, applied magnetic field;
Uxsdysdah components of current density j;
M, Hartmann number;

n,, number of density of electrons;

D, pressure;

Pes electron pressure;

Pr, Prandtl number;

S, suction or blowing parameter;
T, temperature;

Tp,  temperature at the plate;

To, free-stream temperature;

{u,v,w), components of velocity field q;
Ug, free-stream velocity;
(x,y,z), Cartesian co-ordinates.
Greek symbols
wt,  Hall parameter;
v, kinematic viscosity;
Iy density;
te,  magnetic permeability;
Q, angular velocity;
L, dimensionless variable (zU , /).

INTRODUCTION

WHEN a vast expanse of viscous liquid bounded by
an infinite flat plate is rotating about an axis normal
to the plate, a layer is formed near the plate where the
viscous and coriolis forces are of the same order of
magnitude. This is known as Ekman layer (se¢ Prandtl
[17) and the effect of a uniform transverse magnetic
field on such a layer was investigated by Gupta [2].
Soundalgekar and Pop [3] extended the problem con-
sidered in [2] by assuming the plate to be porous and
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subjecting it to uniform suction. Hall effects and
induced magnetic field were neglected in this analysis.
However, when the strength of the magnetic field is
very large, effects due to flow of Hall current should
be taken into account (see Cowling [4]). Recently
Gupta [5] investigated the flow of an electrically
conducting liquid past an infinite porous flat plate in
the presence of a uniform transverse magnetic field, the
Hall effects being taken into account. He found that
asymptotic solution for velocity exists both for suction
and injection at the plate.

The purpose of the present investigation is to extend
the analysis of Gupta [5] to a rotating frame of
reference, and deduce the flow and heat-transfer char-
acteristics of the Ekman layer over the plate which is
maintained at a temperature higher than that of the
ambient stream.

MATHEMATICAL FORMULATION OF THE
PHYSICAL PROBLEM

Consider the steady flow of an electrically conducting
liquid past an infinite porous plate when the liquid and
the plate rotate in unison with a constant angular
velocity Q about z-axis taken normal to the plate
upwards. A uniform magnetic field Hy is imposed
along z-axis and the plate is taken electrically non-
conducting, Since the plate occupying the plane z =0
is of infinite extent, physical conditions depend on z
only in the steady state. We also assume that a uniform
pressure gradient acts along y-axis so that there is a
uniform flow with velocity U, along x-axis. The
equation of continuity V- =0 and the solenoidal
relation for the magnetic field V-H = 0 give w = wo =
constant, H, = constant = Hg, everywhere in the flow.
The constant wo representing the normal velocity at
the plate is negative for suction and positive for blowing
at the plate. The equation of conservation of electric
charge V+j= 0 gives j, = constant. This constant is
zero since j, = 0 at the plate which is electrically non-
conducting. Thus j, = 0 everywhere in the flow. In a
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rotating frame of reference, the equations of momentum
along x, y, z directions are now given by

du 1dp d*u  u.Ho
—=———+4 2 +r~—+ iy 1
Yoqz p ox = 0 dy o ()
d 1é d*v  u.Hd
wo—E=-——§£—2Qu+v Z~'u °~jx (2)
z p oy dz P
1dp
0= -———. 3
03 3)

In deriving (1) through (3), it is tacitly assumed that
the induced magnetic field is negligible so that
H = (0,0, Ho). Such an assumption is however justified
in flow of liquid metals.

When the strength of the magnetic field is very large,
Ohm’s law must be modified to include Hall currents
as follows (see Cowling [4])

1
j+ﬂjxﬂ=a[E+uequ+ Vpe} (4
H, en,

where E is the electric field, w is the cyclotron frequency
and 7 is the collision time of electrons. In writing (4),
the ion slip and the thermo-electric effects are neglected
and further it is assumed that w;t; « 1, where w; and
7; are the cyclotron frequency and the collision time
of ions respectively. Since the physical quantities
depend on z only, equation (4) gives

Jxtotj, = U[Ex+l‘eH0U] )]
Jy—0tjs = g[E,—p.Hou] 6)

where the electrical conductivity ¢ is assumed constant.
The boundary conditions are

u(0) = v(0) = 0;

In the free-stream, the magnetic field is uniform and
V x H = jshows that there is no electric current there.
Thus

u—->U, and v—>0 as z—w. (7)

Jjx—0 and j,-0 as z-o0. 8)

Using (7) and (8) in (5) and (6), we obtain

E.,=0, E,=u.HoU, when z-o0. 9

Since the pressure gradient acts along y-axis in the
free stream, equations (1) and (2) give on using (3),
(7) and (8)

0 1

W _o Lo

Ox p 0y
Further since in the steady state V x E = 0, we must
have dE,/dz=0 and dE,/dz=0 and equation (9)
then gives

+2QU,, (10)

E.=0, E = uH,U, (11)

everywherein the flow. Substitution of (10) in (1) and (2)
gives

du d%u 1
Yodz T Va2 (12)
dv dzv uHo

Multiplying (13) by i(= ./ — 1) and adding to (12), we get

2

d
wo — (U+iv)

o =v(—1;5(u+w)—2Qz[u—Ux+w]

_ i.ueHO

Uxtiiy). (14)

Similarly, equation (6) multiplied by i and added to (5)
gives on using (11)
(1—iwt)(jx+ijy) = —ioucHo[u—U, +iv]. (15)

Eliminating j + ij, from (14) and (15) and introducing
the dimensionless quantities

— u=Ug+i 2U, Wo
U=T’ CzT’ S=E;’ (16)
E, = QTv M2 = ue’H%Zav’
Us pU%
we get
c:g S(ji(gj (21E1 + 1 M; )U =0 (17
Using (7) and (16), the boundary conditions for (17) are
U0)= - U(c)=0. (18)
The solution of (17) satisfying (18) is
U(0) = —exp[4(S—a—if)(] (19)

where

o= [($*+4a;)
+{(S? + 40, * +4(4E; + 20, T }]E/2 (20)

B =[—(8*+4a)
+ {(S?+ 40, P +4(4E; + 20, wr)}E]H/2E (21)
MZ
N =T e @2

It may be noticed from (20) that S—a < 0 both for
suction (§ < 0) and blowing (S > 0) at the plate so that
(19) satisfies U(co) = 0. Thus we arrive at the interesting
result that asymptotic solution for velocity exists both
for suction and blowing at the plate.

For suction, we put S = —S; so that §; > 0. In this
case the solution is obtained from (19) as

u _iSitaf B¢
Go=lme cos =2 (23)
LS+t
. =e ? sin%— (24)

which shows that the velocity distribution is in the
form of Ekman spiral.

For blowing at the plate, S > 0 and the solution is
given by (19) as

(S—-a)
u - B¢
— =1-¢ 2 und 25
U e cos {(25)
(5=a);
'(z =< 2 sin ﬁ?l (26)

which is also in the form of a spiral. The dimensionless
skin-friction coefficients [d/d{{u/Uy)]:=0 =X and
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[d/dL(®/U 4)];=0 = Y are evaluated from (23)~(26) as
follows:
For suction (S < 0) with S = —§;

X = #(S1 +a), Y=§. 2n
For blowing (S > 0)
X =4-9), Y= g (28)

In Table 1, we have computed X, Y and 1/X (=) for
the case of suction with §; = 1 and E; = 0.5 for various
values of the Hall parameter wr and two values of the
Hartmann number M. It is clear from (23)-(26) that
1/X is a measure of the thickness § of the Ekman layer.
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The solution of (31) satisfying (32) is
Pr-Ec-[(S1+a)*+5°]
4S;+a)(S;-Pr—S;—a)

X [e—SrPr-C_e—(SxM)(] (33)

O =1—eSePriy

for S;-Pr—S;—a # 0, and
2 32
() = 1_\:14.5(’:&_’_:?0()_@.{] ce~Biral (34
1

for S, Pr—8;—a=0.

The rate of heat transfer at the plate is given by

dT AUy do
- - e (YY) s
%Mlo wn—nxalo 33

Table 1. Valuesof X, Yand éforS;=1,E; =0.5

M =500 M =10.00
wt X 0 Y X 0 Y
0.5 5.1527 0.1941 1.1821 9.7295 0.1028 2.2211
1.0 44572 0.2244 1.70587 8.3053 0.1204 3.2670
1.5 3.8752 0.2580 1.8574 7.1129 0.1406 3.5653
2.0 3.4528 0.2896 1.8626 6.2436 0.1602 3.5692
2.5 3.1463 0.3178 1.8178 5.0607 0.1976 4.1656
It may be noticed that the shear stress due to the  Both (33) and (34) give

primary flow u decreases and that due to the cross-flow
v first increases, reaches a maximum and then decreases
with increase in the Hall parameter wr for fixed M.
The Ekman layer thickness  increases with increase
in wr for fixed M but decreases with increase in the
strength of the magnetic field for fixed wr. Similar
results are also found for the case of blowing at the plate.

HEAT TRANSFER

Weshall now determine the temperature distribution
and heat transfer in the flow for the case of suction
at the plate. The equation of energy is

dr 4’7 du\?  [dv\?
S Rulliel huied =
pCpwo — . P +pv[(dz> +<dz) ] (29)

where the temperature T is taken as a function of z
only and the last term in (29) represents viscous dis-
sipation, A being the thermal conductivity. Introducing

T-Tc U% Pr= pvG,

Ec=— 22
To-T " Clo-Ty) A

6() = (30)

in (29), we get on using (23) and (24)
d?g de S 2
gt PrSig=Eepr [( 12+°‘> +B } e~ (S48 (31)

where Ty and T, denote the temperature of the plate
and the free stream respectively. We also assume
T > T, sothat the Eckert number Ec > 0. The bound-
ary conditions for 8({) are clear

0(0) = B(c0) = 1.

(32)

ey _Ec{(S:+)*+5%)
<dC);=0-Pr|:S1 T } (36)

Since Tp > T, it follows from (35) and (36) that heat
will flow from the plate to the liquid if

{S1+0)?*+ %
Sy > Ec. WX TP S
SR T 37
while heat will flow from the liquid to the plate if
[(51+27*+ 6]
Si<Ec.—c——=
LS TS ) (38)

It is also clear that there will be no heat transfer from
or towards the wall when

= Ec[(S1+)? +5]/4(S: +a).

Substitution of the values of « and 8 from (20) and (21)
in (38) leads to

(2—Ec)S,
(1—T>52 22

x [{(83 + 4o > + 4(4E 1 + 20y 01)?}? + 83 + 4oy ]*

< % [(8}+4a1)? +4(4E1 + 20 wT)*]*. (39)
It is interesting to note from (38) that heat may flow
from the liquid to the wall even if the wall temperature
is higher than the free stream temperature T,. This
will happen when increased viscous dissipation near
the plate may lead to a temperature distribution in its
neighbourhood greater than T;, despite the fact Tp > T,
In fact (39) shows that heat always flows from the
liquid to the plate if Ec > 4.
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The inequality (39) can be written as

A
Ec> 2 (40)
where
S
A=ﬁ+yaﬂﬁ+wﬁ+ﬂwrﬂmwﬁp
+8T+40,]F, @)
B=§+ﬁﬁ+%f+%mrumwmp
4 4

+—§-‘— [{(S? +4daty)* + 4(4E; +20; 1)}
2.2
+83+40,]F. (42)

In the absence of rotation (E; = 0), the above in-
equality shows that heat will flow from the liquid to

the plate if
< g .
Bjp,=0

A little calculation will show that A/B < (A/B)g, =0
and this means that as the Eckert number increases
from zero, heat will flow from the liquid to the plate
at a value of Ec smaller than the corresponding value
in the absence of rotation. This is to be expected from
a physical point of view since in the presence of
rotation, viscous dissipation of heat is larger than that
in the absence of rotation,

In Table 2, we have shown the values of the dimen-
sionless heat transfer rate Pr~!-(d6/d{). -, at the plate
forseveral values of wrandfor §;, = LE; =05, M=5.

(43)

Table 2. Values of Pr~1(d6/d{);= for §, = 1.
E, =05M=5

wt

Ec 0.5 1.0 L5 20 25
0.3 0.1864  0.2335  0.2852 03314  0.3705
0.5 —0350 -02775 ~0.1914 -0.1144 —0.0491

Thus we find that for fixed Ec, heat-transfer rate
increases with increase in @t and it is interesting to
note that as Ec increases from 0.3 to 0.5, the direction
of heat flux is reversed indicating that there exists some
value of Ec for which the rate of heat transfer will be
zero, as already pointed out.

DISCUSSION

It should be noted that steady asymptotic solution
for the temperature distribution is possible only for the
case of suction at the heated wall. In fact the conduc-
tion of heat away from the wall is balanced by the
convection of heat towards the wall by suction. But
for the case of blowing, no steady temperature field is
possible since the liquid at infinity is progressively
heated both by diffusive processes and by convection
of heat towards infinity by blowing,
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ECOULEMENT ET TRANSFERT THERMIQUE DANS LA COUCHE
HYDROMAGNETIQUE D’EKMAN SUR PLAQUE POREUSE AVEC EFFET HALL

Résumé—L’écoulement dans la couche d’Ekman d’un liguide conducteur sur une plaque poreuse infinie
est étudié dans le cas oy le liquide pénétre sous leffet d’un champ magnétique transversal en tenant
compte de leffet Hall. On trouve qu'une solution asymptotique existe aussi bien en présence d'un
soufflage que d’une aspiration sur la plaque. Pour des paramétres magnétiques et d’aspiration fixés, le
frottement pariétal de Pécoulement primaire augmente avec le paramétre de Hall we, tandis que celui
relatif & Pécoulement secondaire augmente d’abord, atteint un maximum et ensuite décroit lorsque wr
augmente. Une distribution stationnaire de température dans 'écoulement, n'existe que dans les cas d’une
aspiration sur la plaque et de grands nombres d’Eckert; la convection thermique s’effectue du liquide vers
la paroi, méme si la température de paroi est supérieure 4 celle de 'écoulement ambiant.

STROMUNG UND WARMEUBERGANG IN EINER HYDRO-MAGNETISCHEN
EKMANSCHICHT AN EINER POROSEN PLATTE MIT HALLEFFEKTEN

Zusammenfassung—FEs wird die Strémung einer Ekmanschicht einer leitenden Flissigkeit an einer
unendlich langen pordsen Platte untersucht, wobei die Fliissigkeit durch ein Magnetfeld quer durch-
drungen wird und Halleffekte Berticksichtigung finden. Es zeigte sich, daB asymptotische Losungen
vorhanden sind sowohl fiir Absaugung als auch fiir Ausblasung aus der Platte. Bei fixierten Magnet- und
Absaugungsparametern nimmt die Wandreibung der Primédrstrémung zu mit Zunahme der Hallparameter
wt wihrend sie fiir die Sekundérstrémung erst zunimmt, ein Maximum erreicht und dann abnimmt mit
zunchmendem w«. Stationiire Temperaturverteilung in der Strémung existiert nur fiir Absaugung an der
Platte und bei groBen Eckwert-Zahlen. Wirme flieBt von der Flissigkeit zur Wand, selbst bei Wand-
temperaturen, die hoher liegen als die der umgebenden Strémung,
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TEYEHME W NEPEHOC TEIUIA B TMIPOMATHUTHOM CJIOE SKMAHA
HA TMOPUCTOU TIJIACTUHE C YYETOM 2O®®EKTOB XOJIIA

Ammoraums — Uccnenosanoch TeyeHHe B Cjoe DKMaHa NpH ob6TekaHnH OecKOHevHOH TOPHCTOM
MACTUHBI 3JIEKTPOTIPOBOASALLEH MXHIAKOCTBIO C HAJIOKEHHEM MONEPEYHOTr0 MArHUTHOrO NOAst H
yyeTom ddexto Xonna. HallieHo, 4T0 aCHMNTOTHYECKOE PELLEHKE CYILECTRBYET IPH HAJNYKK KAk
OTCOCa, TaK M BOyBa Ha muacTHHe. Ilpyu onpenesieHHBbIX 3HAYEHHAX TTAPAMETPOB MAarHUTHOIO MOJIS
M NapaMeTpoB BAYBA NOBEPXHOCTHOE TPEHHE OCHOBHOFO NMOTOKA YBETMYHBACTCH C YBEJIMYEHHEM
napameTrpa Xonia wr, B TO BpeMA KaK BTOPUYHOE TCYEHHME CHAYAA YBEAHYMBAETCH, NOCTUIAET
MaKCMMyMa, a 3aTeéM YMCHbLIAETCS C yBenWueHuem w7. CTauMOHapHOE pacrpenesieHue Temre-
paTypbi B IOTOKE HMEET MECTO TOJbKO AJIS OTCOCA HA MJIACTHHE W MPHU GONBIWIKX 3HAYEHHAX UMChA
OkKepTa; MOTOK TENNia HANpaBAeH OT XHJAKOCTH K CTEHKE, AaXe eCIM TEMNEpPATypa CTEHKH BbllLE
TEMNEPATYpPbl MOTOKA.
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