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Abstract-Flow in the Ekman layer of a conducting liquid past an infinite porous plate is investigated 
when the liquid is permeated by a transverse magnetic field and the Hall effects are taken into account. 
It is found that asymptotic solution exists both in the presence of suction or blowing at the plate. For 
fixed magnetic and suction parameters, the skin friction of the primary flow increases with increase in 
the Hall parameter wr, while that for the secondary flow first increases, reaches a maximum and then 
decreases with increase in ~7. Steady distribution of temperature in the flow exists only for suction at 
the plate and for large Eckert numbers, heat flows from the liquid to the wall even if the wall temperature 

is higher than that of the ambient stream. 

NOMENCLATURE 

c P’ specific heat at constant pressure; 

2, 
electric charge; 
Ekman parameter; 
Eckert number; 

ZE,,E*h components of electric field E; 
(Z& , Hy , I&), components of magnetic field H; 

Ho, applied magnetic field; 

ciX,jY,jz), components of current density j; 
M, Hartmann number; 

Q?z number of density of electrons; 

P7 pressure; 

Per eiectron pressure; 
Pr, Prandtl number; 
S, suction or blowing parameter; 

T, temperature; 
T 0, temperature at the plate; 
T free-stream tem~rature; 
(gy;, w), components of velocity field q; 
u m, free-stream velocity; 
(x, y, z), Cartesian co-ordinates. 

Greek symbols 

@.Jr, Hall parameter; 
p, kinematic viscosity; 

PY density; 

per magnetic permeability; 
Q angular velocity; 

5, dimensionless variable (zU,/v). 

INTRODU~ION 

WHEN a vast expanse of viscous liquid bounded by 
an infinite flat plate is rotating about an axis normal 
to the plate, a layer is formed near the plate where the 
viscous and coriolis forces are of the same order of 
magnitude. This is known as Ekman layer (see Prandtl 
[l]) and the effect of a uniform transverse magnetic 
field on such a layer was investigated by Gupta [Z]. 
Soundalgekar and Pop [3J extended the problem con- 
sidered in [;?I by assuming the plate to be porous and 

subjecting it to uniform suction. Hall effects and 
induced magnetic field were neglected in this analysis. 
However, when the strength of the magnetic field is 
very large, effects due to flow of Hall current should 
be taken into account (see Cowling 141). Recently 
Gupta [5] inv~tigat~ the flow of an electrically 
conducting liquid past an infinite porous flat plate in 
the presence of a uniform transverse magnetic field, the 
Hall effects being taken into account. He found that 
asymptotic solution for velocity exists both for suction 
and injection at the plate. 

The purpose of the present investigation is to extend 
the analysis of Gupta [S] to a rotating frame of 
reference, and deduce the flow and heat-transfer char- 
acteristics of the Ekman layer over the plate which is 
maintained at a temperature higher than that of the 
ambient stream. 

MATHEMA~CAL FORMULATION OF THE 
PHYSICAL PROBLEM 

Consider the steady flow of an electrically conducting 
liquid past an infinite porous plate when the liquid and 
the plate rotate in unison with a constant angular 
velocity Q about z-axis taken normal to the plate 
upwards, A uniform magnetic field Ho is imposed 
along z-axis and the plate is taken electrically non- 
conducting. Since the plate occupying the plane z = 0 
is of infinite extent, physical conditions depend on z 
only in the steady state. We also assume that a uniform 
pressure gradient acts along y-axis so that there is a 
unifo~ flow with velocity U, along x-axis. The 
equation of continuity V-q = 0 and the solenoidal 
relation for the magnetic field V - H = 0 give w = w0 = 
constant, H, = constant = Ho everywhere in the flow. 
The constant w. representing the normal velocity at 
the plate is negative for suction and positive for blowing 
at the plate. The equation of conse~ation of electric 
charge V*j = 0 gives j, = constant. This constant is 
zero since j, = 0 at the plate which is electrically non- 
conducting. Thus j, = 0 everywhere in the flow. In a 
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rotating frame ofreference, the equations of momentum 
along x, y, z directions are now given by 

du 1 8P d2u AHO 
““~= ---+f2R~+vdz2+ 

P Lx 
_‘JY (1) 

P 

dv 1 dp 
war= -pG-2Ru+v;ii-- 

d=u ,LLA%~ 
x (2) 

z > z P 

(J= _L!?!. 
P dz 

In deriving (1) through (3), it is tacitly assumed that 
the induced magnetic field is negligible so that 
H z (0, 0, Ho). Such an assumption is however justified 
in flow of liquid metals. 

When the strength of the magnetic field is very large, 
Ohm’s law must be modified to include Hall currents 
as follows (see Cowling [4]) 

E+p,qxH++Vp, 1 (4) 
e 

Using (7) and (16), the boundary conditions for (17) are 

where E is the electric field, w is the cyclotron frequency 
and 7 is the collision time of electrons. In writing (4), 
the ion slip and the thermo-electric effects are neglected 
and further it is assumed that WiZi <C 1, where Wi and 
Ti are the cyclotron frequency and the collision time 
of ions respectively. Since the physical quantities 
depend on z only, equation (4) gives 

j,+wzj,= a[E,+p,Hot~] (5) 

jY-,,jX = cr[E,-p,H,,u] (6) 

The solution of (17) satisfying (18) is 

a([) = - exp[+(S-cc - i/?)[] 

where 

c( = [(P +4c(1) 

+ {(S2f4~1)=+4(4E1 +2cr1w~)2}+]*/2i 

p = [-(S2+4Q) 

+{(~2+40(,)2+4(4E1+2c(lo~)2}*]~/2* 

Multiplying (13) by i( = ,/- 1) and adding to (121, we get 

Wo L (u + iu) = V g (u + iv) - 2Qi[u - U, + iu] 

CueHo 
--+jX+yy). (14) 

Similarly, equation (6) multiplied by i and added to (5) 
gives on using (11) 

(l-ior)&+&)= -iap,Ho[u-U,+iu]. (15) 

Eliminating j,+ ij, from (14) and (15) and introducing 
the dimensionless quantities 

(16) 

we get 

iJ = 0. (17) 

U(0) = - 1, U(cc) = 0. (18) 

where the electrical conductivity CT is assumed constant. 
The boundary conditions are 

u(O)=u(O)=O; u+U, and u-+0 as z-+co. (7) 

In the free-stream, the magnetic field is uniform and 
V x H = j shows that there is no electric current there. 
Thus 

j, +O and j, -+ 0 as z--tKJ. (8) 

Using (7) and (8) in (5) and (6), we obtain 

E,=O, E,=peHoU, when z-co. (9) 

Since the pressure gradient acts along y-axis in the 
free stream, equations (1) and (2) give on using (3), 

(7) and (8) 

(10) 

Further since in the steady state V x E = 0, we must 
have dE,/dz = 0 and dE,/dz = 0 and equation (9) 
then gives 

E, = 0, E, = pceHoU, (11) 

everywherein the flow. Substitution of (10) in (1) and (2) 
gives 

du d2u 
“oz= v~+2Qv+~ 

AHO. j 
P y 

(12) 

(19) 

(20) 

(21) 

(22) 

It may be noticed from (20) that S-cr < 0 both for 
suction (S < 0) and blowing (S > 0) at the plate so that 
(19) satisfies u(co) = 0. Thus we arrive at the interesting 
result that asymptotic solution for velocity exists both 
for suction and blowing at the plate. 

For suction, we put S = -S1 so that S1 > 0. In this 
case the solution is obtained from (19) as 

(23) 

V 
-_=e 

UCC 

-‘“~” sin pi 

2 
(24) 

which shows that the velocity distribution is in the 
form of Ekman spiral. 

For blowing at the plate, S > 0 and the solution is 
given by (19) as 

(25) 

t’ 
-_=e 

u, 
!qG sin pr 

2 
(26) 

(13) 
which is also in the form of a spiral. The dimensionless 
skin-friction coefficients [d/dc(u/U,)],=o = X and 
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[dMGJ,)l;=o = Y are evaluated from (23)-(26) as The solution of (31) satisfying (32) is 
follows : 

For suction (S < 0) with S = -Si 

x = :(st+cc), y=;. 

For blowing (S > 0) 

x = $(LY-S), Y=!. 

e(y) = 1 _e-S!.Pr,r + Pr.Ec.[(S1+cc)‘+/lZ] 

4(Si+cc)(S1.Pr-S1-a) 

(27) x [e- &++i_,-cs,+aK] (33) 

forS1.Pr-S1-cc#O,and 

(28) 
O(i) = I- 1 + EC{@1 +@ +P} . ( 

4Sl 1 . e-(S’ +a (34) 

L _ 

In Table 1, we have computed X, Y and l/X(= 6) for 
forS1.Pr-S1-u=O. 

the case of suction with S 1 = 1 and E I= 0.5 for various 
values of the Hall parameter 07 and two values of the 

The rate of heat transfer at the plate is given by 

Hartmann number M. It is clear from (23)-(26) that 
l/X is a measure of the thickness 6 of the Ekman layer. 

(35) 

Table 1. Values of X, Y and 6 for S1 = 1, E1 = 0.5 

M = 5.00 M = 10.00 

Wf X s Y X 6 Y 

0.5 5.1527 0.1941 1.1821 9.7295 0.1028 2.2211 
1.0 4.4572 0.2244 1.7057 8.3053 0.1204 3.2670 
1.5 3.8752 0.2580 1.8574 7.1129 0.1406 3.5653 
2.0 3.4528 0.2896 1.8626 6.2436 0.1602 3.5692 
2.5 3.1463 0.3178 1.8178 5.0607 0.1976 4.1656 

It may be noticed that the shear stress due to the 
primary flow u decreases and that due to the cross-flow 
u first increases, reaches a maximum and then decreases 
with increase in the Hall parameter wz for fixed M. 
The Ekman layer thickness 6 increases with increase 
in c-07 for fixed M but decreases with increase in the 
strength of the magnetic field for fixed 07. Similar 
results are also found for the case of blowing at the plate. 

HEAT TRANSFER 

We shall now determine the temperature distribution 
and heat transfer in the flow for the case of suction 
at the plate. The equation of energy is 

where the temperature T is taken as a function of z 
only and the last term in (29) represents viscous dis- 
sipation, 1 being the thermal conductivity. Introducing 

u’, PVC, 
EC=C,(To_~m)’ Pr=T t30) 

in (29), we get on using (23) and (24) 

d28 _+pr.sl!$EC.pr[(f)2+!c].e-‘S.+b’; (31) 

di2 

where To and T, denote the temperature of the plate 
and the free stream respectively. We also assume 
TO > T, so that the Eckert number EC > 0. The bound- 
ary conditions for 0(c) are clear 

e(0) = 0, e(a) = 1. (32) 

Both (33) and (34) give 

Since To > T,, it follows from (35) and (36) that heat 
will flow from the plate to the liquid if 

s 

1 
> Ec w1+~)2+B2j 

4@1+ co 

while heat will flow from the liquid to the plate if 

s1 <Ec~Rsl+~)2+~21 
4(S1+cr) . 

(38) 

It is also clear that there will be no heat transfer from 
or towards the wall when 

S1 = E~[(S1+cr)~+/!?‘]/4(S1 +c(). 

Substitution of the values of cz and fi from (20) and (21) 
in (38) leads to 

x [{(S:+4@)2+4(4E1+2c(1wz)2}++Sj+4cr,]+ 

+(S:+4a1)‘+4(4E~+2~~)~]+. (39) 

It is interesting to note from (38) that heat may flow 
from the liquid to the wall even if the wall temperature 
is higher than the free stream temperature T,. This 
will happen when increased viscous dissipation near 
the plate may lead to a temperature distribution in its 
neighbourhood greater than TO despite the fact TO > T,. 
In fact (39) shows that heat always flows from the 
liquid to the plate if EC > 4. 
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The inequality (39) can be written as 

where 

(40) 

A = S:+~[{(S:+4a~)2+4(4E1+2alw7)2}* 
J2 +s4+4C+, (41) 

B=S:+[(S:f4al)2+4(4E1+2al~!Z]’ 

4 4 

+--S_t[{(S:+4~,)~+4(4E~+2crior)~)+ 
2J2 +S:+&r]f. (42) 

In the absence of rotation (El = 0), the above in- 
equality shows that heat will flow from the liquid to 
the plate if 

(43) 

A little calculation will show that A/B <: (A/B)E, =o 

and this means that as the Eckert number increases 
from zero, heat will flow from the liquid to the plate 
at a value of EC smaller than the corresponding value 
in the absence of rotation. This is to be expected from 
a physical point of view since in the presence of 
rotation, viscous dissipation of heat is larger than that 
in the absence of rotation. 

In Table 2, we have shown the values of the dimen- 
sionless heat transfer rate Pr-’ .(d@/dQcZO at the plate 
for several values of wr and for S1 = 1, E, = 0.5, M = 5. 

Table 2. Values of Pr-‘(dB/d&=o for Si = 1. 
E, = 0.5, M = 5 

WT 

EC! 0.5 1.0 1.5 2.0 2.5 

0.3 0.1864 0.2335 0.2852 0.3314 0.3705 
0.5 -0.3560 -0.2775 -0.1914 -0.1144 -0.0491 

Thus we find that for fixed EC, heat-transfer rate 
increases with increase in w and it is interesting to 
note that as EC increases from 0.3 to 0.5, the direction 
of heat flux is reversed indicating that there exists some 
value of EC for which the rate of heat transfer will be 
zero, as already pointed out. 

DISCUSSION 

It should be noted that steady ~~ptoti~ solution 
for the temperature distribution is possibIe only for the 
case of suction at the heated wall. In fact the conduc- 
tion of heat away from the wall is balanced by the 
convection of heat towards the wall by suction. But 
for the case of blowing, no steady temperature field is 
possible since the liquid at infinity is progressively 
heated both by diffusive processes and by convection 
of heat towards infinity by blowing. 
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ECOULEMENT ET TRANSFERT THERMIQUE DANS LA COUCHE 
HYDROMAGNETIQUE D’EKMAN SUR PLAQUE POREUSE AVEC EFFET HALL 

R~um~-~~oulement dam la couche d’Ekman dun liquide conducteur sur une plaque poreuse infinie 
est &die dam le cas oti le liquide pen&e sous l’effet dun champ magnetique transversal en tenant 
compte de l’effet Hall. On trouve qu’une solution asymptotique existe aussi bien en presence d’un 
soufflage que dune aspiration sur la plaque. Pour des parambres magnitiques et d’aspiration fix&, le 
frottement par&al de l’&oulement primaire augmente avec le paramttre de Hall or, tandis que celui 
relatif a l’ecoulement secondaire augmente d’abord, atteint un maximum et ensuite decroit lorsque wz 
augmente. Une distribution stationnaire de temperature dans l’ecoulement, n’existe que dans les cas d’une 
aspiration sur la plaque et de grands nombres d’Eckert; la convection thermique s’effectue du Iiquide vers 

la paroi, mime si la temp~ature de paroi est superieure & celle de l’ecoulement ambiant. 

STR6MUNG UND WARMEUBERGANG IN EINER HYDRO-MAGNETISCHEN 
EKMANSCHICHT AN EINER PORdSEN PLATTE MIT HALLEFFEKTEN 

Z~a~~nf~uug-Es wird die Str~mung einer Ekmanschicht einer Ieitenden Fliissigkeit an einer 
unendlich langen poriisen Platte untersucht, wobei die Fhissigkeit durch ein Magnetfeld quer durch- 
drungen wird und Halleffekte Berticksichtigung finden. Es zeigte sich, daB asymptotische Lijsungen 
vorhanden sind sowohl fiir Absaugung als such fur Ausblasung aus der Platte. Bei fixierten Magnet- und 
Absaugungsparametern nimmt die Wandreibung der Primlrstromung zu mit Zunahme der Hallparameter 
cur wiihrend sie fiir die Sekundiirstromung erst zunimmt, ein Maximum erreicht und dann abnimmt mit 
zunehmendem wr. Stationlre Temperaturverteilung in der StrSmung existiert nur fiir Absaugung an der 
Platte und bei groBen Eckwert-Zahlen. W&me flieih von der Fhissigkeit zur Wand, selbst bei Wand- 

temperaturen, die hijher liegen als die der umgebenden StrSmung, 
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TEqEHME M IIEPEHOC TEnJIA B l-MAPOMAf-HMTHOM CJlOE 3KMAHA 
HA I’IOPklCTOl? lVlACTMHE C YYETOM 3@@EKTOB XOJUlA 

AHHOTaUHR- kiCCneAOBanOCb TeYeHHe B CnOe 3KMaHa tIpI 06TeKaHFiH 6eCKOHevHOi3 nOpHCTOii 

IUlaCTWHbl 3neKTpO~pOBO~R~eii XCKW~KOCTbtO C HanOmeHHeM IlOnePeYHOrO MarHHTHOrO IlOnFl II 

yYeTOM 3(t)&KTOB XOJlJla. HatineHo,YTO aCI.iMIlTOTH'ieCKOe peUleHtieCyUleCTRyeT npH HaJlH'iWW KBK 

oTcoca,TaK II Bnysa Ha nnacrnHe.llpH onpeneneimblx 3HaveHmx napar4eTpoB iwarwiTHor0 nom 

H IlapaMeTpOB BnyBa IlOBepXHOCTHOe TpeHHe OCHOBHOrO IlOTOKa yBeJlWiWBaeTCR C yBenWleHkieM 

napaMeTpa Xonna ~7, B ~0 Bpeh4n KaK BTopwiHoe TeveHHe cHaYana yeennwsaeTcn, nocTmaeT 

h4aKwMyMa, a 3aTeM yMeHbmaeTcn c yBenwiewieM UT. CTauHoHaptioe pacnpeaeneHne TeMne- 
paTypbl BnOTOKe MMeeT MeCTO TOnbKO nna OTCOCa Ha nnawwiie H npw 6onbwix 3HaYeHkiRX vt4cna 

3KKepTa; noToK Tenna tianpaeneti 0T mwnKocTn K cTeHKe,naXe ecnki TeMnepaTypa cTetiiw Bbme 

TeMnepaTypbr nOTOKa. 
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